Sex-biased gene expression and pathway activation in hepatitis-associated HCC

By: Annika Jorgensen Advisor: Melissa Wilson, PhD

Viral-mediated Hepatocellular Carcinoma (HCC) poses a considerable health problem worldwide

Males have higher incidence and worse prognosis with HCC

- The incidence of HCC in males is two to four times that of females
- Males are two times more likely to die from chronic liver disease than females
- Sex differences in HCC remain even after adjusting for risk factors such as alcohol intake and smoking

Liver cancer is the third leading cause of cancer mortality worldwide and occurs more often in men than women.

Known sex-differences in gene expression in HCC

- Observed sex-specific differences in gene expression across
 tumor:tumor-adjacent tissues
 - Account for inherent sex differences
 - Did not account for viral etiology
- We don't know the sex-differences and pathway differences in viral-mediated HCC

Goal: Determine sex differences in differentially expressed genes and pathways in viral mediated liver cancer

1. Identify differentially expressed genes

2. Identify enriched pathways in differentially expressed genes

Whole transcriptome sample dataset

• Whole transcriptome (RNA-seq) data from 260 donors obtained from International Cancer Genome Consortium

	Male Tumor	Male Tumor-adjacent	Female Tumor	Female Tumor-Adjacent
No hepatitis	25	25	3	3
HBV	33	40	8	9
HCV	59	72	34	36
HBV & HCV	4	4	0	0
Total	121	140	8	9

*LIRI-JP dataset obtained with controlled access from Dr. Kenneth Buetow

Genes are differentially expressed in HCC

Differentially expressed genes \rightarrow logFC \geq 2 and p.value < 0.05

Tumor vs. Tumor - adjacent 509 downregulated in tumors 158 upregulated in tumors

Sex drives differential gene expression in viral-mediated HCC

Differentially expressed genes \rightarrow logFC \geq 2 and p.value < 0.05

67.7% are shared between males and females, however 65 (8.4%) genes unique to female 184 genes (23.9%) unique in male.

H19 is upregulated in male tumor vs. tumor-adjacent but not female tumor vs. tumor-adjacent comparisons

- Oncogenic long coding RNA
- H19 is paternal imprinted and maternally expressed
 - Paternal copy silenced only maternal copy active
- H19 is expressed in embryo → Repressed at birth → Re-expressed in some cancers
- Found as potential oncogene in HCC in mouse models

eEF1α2 downregulated in male tumor vs. tumor-adjacent but not female tumor vs. tumor-adjacent comparisons

- Located on the 20th chromosome
- Encodes two isoforms of alpha subunit of elongation factor-1 complex
 - Alpha 1 expressed in liver
- Found as potential oncogene in HCC in mouse models

Multidimensional scaling analysis on male and female tumor tumoradjacent samples does not show strong effect of etiology on sample variation

Female Tumor

Male Tumor

Differentially expressed genes \rightarrow logFC \geq 2 and p.value < 0.05

43.5% of genes are shared between HBV and HCV tumor tumor-adjacent comparisons, however 381 (37.4%) genes unique to HBV 195 (19.1%) genes unique to HCV

Differentially expressed genes $\rightarrow \log FC \ge 2$ and p.value < 0.05

48.8% of genes are shared between male and female HBV tumor tumor-adjacent comparisons, however, 290 (25.5%) genes unique to male HBV, and 292 (25.7%) genes unique to female HBV

Differentially expressed genes $\rightarrow \log FC \ge 2$ and p.value < 0.05

59.5% of genes are shared between male and female HCV tumor tumor-adjacent comparisons, however, 237 (29.3%) genes unique to male HCV, and 90 (11.1%) genes unique to female HCV

Pathway analysis reveals enrichment of cell cycle pathways in female differentially expressed genes and immune pathways in male differentially expressed genes

- Reactome pathway analysis
- Enriched pathways p-value < 0.05

Genes differentially expressed between female tumor vs. tumor-adjacent samples are enriched for involvement in cell cycle pathways

- Ten pathways enriched in females
- Four associated with the mitotic cell cycle
 - Cell cycle Mitotic
 - Phosphorylation and Emi1
 - Activation of NIMA Kinases NEK9, NEK6, NEK7
 - Resolution of Sister Chromatid Cohesion
- Mitotic cell cycle pathways have been shown to be enriched in HCC

APC/C-mediated degradation of cell cycle proteins*	Regulation of APC/C activators between G1/S and early anaphase*		Phosphorylation and Emi1
Mitotic Prophase*	Nuclear Envelope Breakdown*		Activation of NIMA Kinases NEK9, NEK6, NEK7
Mitotic Prometaphase*		Resolution of Sister Chromatid Cohesion	
Class A/1 Rhodopsin-like receptor*	Amine ligand-binding receptor*		Adrenoceptors
s*			
Arachidonic acid metabolism*	Synthesis of (16-20)-hydroxyeicosatetraenoic acids (HETE)		
*			
Cytochrome P450 - arranged by substrate type*	Xenobi	iotics	CYP2E1 reactions
	APC/C-mediated degradation of cell cycle proteins* Mitotic Prophase* Mitotic Prometapha Class A/1 Rhodopsin-like receptor* s* Arachidonic acid metabolism* * Cytochrome P450 - arranged by substrate type*	APC/C-mediated degradation of cell cycle proteins* Mitotic Prophase* Mitotic Prometaphase* Class A/1 Rhodopsin-like receptor* Arachidonic acid metabolism* Cytochrome P450 - arranged by substrate type* APC/C Begula APC/C betwee early a Nuclea Breakc Nuclea Breakc Nuclea Breakc Nuclea Breakc Nuclea Breakc Synthe (16-20) (HETE	APC/C-mediated Regulation of degradation of APC/C activators between G1/S and early anaphase* Mitotic Nuclear Envelope Prophase* Breakdown* Mitotic Prometaphase* Resolution Class A/1 Amine Rhodopsin-like ligand-binding receptor* Synthesis of * Arachidonic acid Metabolism* Synthesis of (16-20)-hydroxyeicos (HETE) * Cytochrome P450 - arranged Xenobiotics

* Added for grouping purposes not significant

Genes differentially expressed between male tumor vs. tumor-adjacent are enriched for involvement with the immune system

- Two Cytokine Signaling pathways enriched
 - Interleukin-33 signaling
 - Interleukin-10 (IL-10) signaling
- Cytokines closely associated with HCC
- Studies have linked high IL-10 protein levels with lower survival rates

ansport of small mol	ecules		
Plasma lipoprotein	assembly, remodeling, and o	clearance*	
Plasma lipoprote	in remodeling		
nmune System*			
Cytokine Signaling	in Immune system		
Signaling by Interleukins*	Interleukin-1 family Interleukin-33 signali signaling*		
	Interleukin-10 signaling**		
Innate Immune Sys	tem		
Complement Cascade*	Terminal pathway of complement**		

* Added for grouping purposes not significant

** Pathways shared by overall tumor tumor-adjacent genes and male tumor tumor-adjacent genes

Differentially expressed genes in HBV and HCV tumor vs. tumor-adjacent have no pathways unique to a specific etiology.

- Reactome pathway analysis
- Enriched pathways p-value < 0.05

Pathways enriched in shared genes have know associations with HCC and HCV

- Seven pathways shared with HCV and HBV
 - Drug ADME
 - Aspirin ADME
 - Synthesis of (16-20)-hydroxyeicosatetraenoic acids (HETE)
 - Cell Cycle, Mitotic
 - Phosphorylation and Emi1
 - G2/M DNA replication checkpoints
 - Plasma lipoprotein remodeling
- HCV stimulated G1/S pathway which activates CDKs
 - Phosphorylation and Emi1 is activated by CDKs
- HCV dysregulates host lipid metabolism
 - Synthesis of (16-20)-hydroxyeicosatetraenoic acids (HETE) associated with lipid metabolism

Drug ADME			
Aspirin ADME			
Metabolism*			
Metabolism of lip	ids*		
Fatty acid metabolism*	Arachidonic acid metabolism*	Synthesis of (16-20)-hydroxyeicosatetraenoic acids (HETE)	
Cell Cycle*			
Cell Cycle, Mitoti	c		
Regulation of mitotic cell cycle*	APC/C-mediated degradation of cell cycle proteins*	Regulation of APC/C activators between G1/S and early anaphase*	Phosphorylation and Emi1
Cell Cycle Check	points*		
G2/M Checkpoints*		G2/M DNA replication checkpoints	
ransport of small m	olecules*		
Plasma lipoprote	in assembly, remodelin	g, and clearance*	
Plasma lipopro	tein remodeling		

* Added for grouping purposes not significant

Sex-biased differentially expressed genes and enriched pathways are potential targets for individualized medicine

- We identified differentially expressed genes and enriched pathways that are sex-specific
- We identified differentially expressed genes and enriched pathways that are viral etiology specific
- These results will help create individualized diagnostics and therapeutics for viral-mediated HCC

Acknowledgements

- Members of Dr. Wilson's Sex Chromosome Lab
- Thesis Committee
 - Dr. Kenneth Buetow
 - Dr. Melissa Wilson
 - Elizabeth Borden
- My family and friends

Questions?

The number of unique genes show the possibility significant effect of sex and etiology on sample variation

- The number of unique genes in each viral etiology suggest the possibility of significant differentiated genes that are etiology specific
- Further investigation is needed

Viral-mediated Hepatocellular Carcinoma poses a considerable health problem worldwide

- Liver cancer in the second deadliest cancer worldwide ⁴
- Hepatocellular Carcinoma (HCC) accounts for 75% of all cases¹
- Hepatocellular Carcinoma (HCC) is increasing prevalence in many countries ¹⁶
- 80% of cases are mediated by Hepatitis B virus and Hepatitis C virus ⁸

*Taken from Liver Cancer Explained | EASL Campus

MDS analysis reveals that etiology does not have a strong effect on sample variation

- The MDS analysis found that etiology does not have a strong effect on sample variation
- The number of unique genes in each viral etiology suggest the possibility of significant differentiated genes that are etiology specific
- The number unique genes contradicts the results from the MDS plot
- Further investigation needed

What We Don't Know

- We aim to discover distinct gene regulatory functions between sexes and viral etiologies.
- This will help provide an understanding of biological mechanisms underlying sex and viral etiological differences in viral-mediated HCC.
- This understanding will aid in the creation of sex-specific cancer diagnostics and therapeutics

The goal of the differential expression analysis is to see for a given gene if the observed expression difference between tumor and tumor-adjacent is greater than what would be expected due to random variation.

The goal of pathway enrichment analysis is to see if any gene regulatory networks are overrepresented in a groups of genes than what would be expected by random chance.

Sex drives differential gene expression in viral-mediated hepatocellular carcinoma

- Sex drives differential gene expression
 - Separation of samples on MDS analysis on overall tumor tumor-adjacent pairwise comparison is driven by tumor vs. tumor-adjacent and sex (Figure 1)
 - List number of genes upregulated and downregulated genes in tumor (Figure 2-4)
 - Majority of DEGs shared between male and female but 184 number are unique to male and 65 are unique to female - calculate percentage unique vs. shared

Goal: Determine sex differences in differentially expressed genes and pathways in viral mediated liver cancer

- 1. Identify differentially expressed genes subsetted by sex, etiology, or both
- 2. Identify enriched pathways in genes subsetted by sex, etiology, or both

Sex drives differential gene expression in viral-mediated HCC

Multidimensional scaling analysis on top 50 genes

Demonstrates impact of sex on explaining the variation in the samples

MDS plot

Principal component 1 37% -- attributable tumor vs. tumor-adjacent

Principal component 2 12%-- male vs. female sex

Tumor vs. Tumor - adjacent 509 downregulated in tumors 158 upregulated in tumors

Female Tumor vs. Tumor - adjacent

430 downregulated

157 upregulated

164 upregulated

67.7% are shared between males and females, however 65 (8.4%) genes unique to female 184 genes (23.9%) unique in male.

Multidimensional scaling analysis does not reveal a strong effect of etiology on sample variation differential gene expression.

- Multidimensional scaling analysis on male and female tumor tumor- adjacent samples does not show strong effect of etiology on sample variation(Figure 5)
- Majority of DEGs shared between HBV and HCV with X and Y Figure (6-7)

Majority of differentially expressed genes separated by both sex and etiology are shared by both males and females.

- List number of genes upregulated and downregulated in tumor (Figures 9-12)
- Number of DEGs shared between male and female HBV (Figure 9,11).
- If number of DEGs is small mention that if it is large talk about further investigation is require
- Number of DEGs shared between male and female HCV (Figures 10,12)
- If number of DEGs is small about it if it is large further investigation is required

Genes differentially expressed between female tumor vs. tumor-adjacent samples are enriched for involvement in cell cycle pathways

- Majority of enriched pathways are shared between male and female differentially expressed genes (Figure 13)
- Ten pathways are enriched (Table 3)
- Pathways enriched are associated with the cell cycle

Genes differentially expressed between male tumor vs. tumor-adjacent are enriched for involvement with the immune system.

- Small number (2) of pathways are enriched (Table 4)
- Pathways enriched associated with immune system

Goal: Determine sex differences in differentially expressed genes and pathways in viral mediated liver cancer

- 1. Identify differentially expressed genes subsetted by sex, etiology, or both
- 2. Identify enriched pathways in genes subsetted by sex, etiology, or both

Differentially expressed genes in Hepatitis B tumor vs. tumor-adjacent tissue and Hepatitis C tumor vs. tumor-adjacent tissue have no pathways unique to a specific etiology.

- No pathways unique to HBV and HCV
- Seven pathways enriched in both HBV and HCV (Table
- 5 pathways unique to overall tumor tumor adjacent and require further investigation

Drivers of genetic gene expression \rightarrow Sex

- We found gene dysregulation in tumor that is consistent with our understanding of carcinogenesis.
- We found a number of genes to be sex differentially expressed which is consistent with the idea that HCC is a sex biased cancer
 - Consistent after relaxing p. Value for females from $0.05 \rightarrow 0.1$

Conclusions

- Identified sex-biased differentially expressed genes
- Identified differentially expressed genes specific to viral-etiologies
- Identified potential pathways enriched by sex specific differentially expressed genes
- Identified potential pathways enriched by viral-etiology specific differentially expressed genes

Conclusions

- Distinct regulatory functions between sexes and viral etiologies
- Created a framework for discovering sex-biased genetic expression and regulatory networks in viral mediated sex-biased cancers
- Created a framework for discovering viral-etiology genetic expression and regulatory network in viral mediated sex-biased cancers

Identified sex-biased differentially expressed genes

Identified DEGs specific to viral-etiologies

Identified potential pathways... sex-biased viral-etogies

Supplementary Slides

HBV logFC plot

 Maroon dots indicate residual > 2.25

Further Investigations

- Identify enriched pathways that are sex-biased and viral etiology specific
- Further investigate how etiology drives differential gene expression

Supplementary Slides→ Methods

• Trimmomatic parameters

- 2 seed mismatches, palindrome clip threshold 30, simple clip threshold 10, leading quality value 3, trailing quality value 3, sliding window size 4, minimum window quality 30, and minimum read length of 50
- Why sex-specific?
 - To overcome mismapping of short sequencing reads due to sequence homology on X and Y chromosomes the reads were mapped to a sex-specific reference genome.
- sample ID "RK023" was removed from the dataset due to low quality.

Methods→ Samples, Alignment Quantification, Filtering

- FASTA→FASTQC² quality control→trimmed using Trimmomatic ³ → Hisat2 mapping to GRCh38.p7 sex-specific genome ¹¹ → Quantified by *Subread featureCounts* ¹⁵
- Genes were retained based on FPKM value of \geq 0.5 and read count of > 6 in at least 10 samples
 - \circ FPKM \rightarrow fragments per kilobase of exon per million fragments mapped
 - $\circ \quad \mathsf{TMM} \to \mathsf{Trimmed} \; \mathsf{Mean} \; \mathsf{of} \; \mathsf{M}\text{-values}$

	Male Tumor	Male Tumor-adjacent	Female Tumor	Female Tumor-Adjacent
No hepatitis	25	25	3	3
HBV	33	40	8	9
HCV	59	72	34	36
HBV & HCV	4	4	0	0
Total	121	140	8	9

Sample distribution

Methods→ Differential Expression

- Design matrix had lesion type as predictor variable
 - Library added as covariate
 - Sex added as covariate to overall tumor vs. tumor-adjacent and tumor tumor-adjacent stratified by viral etiology
- voomWithQualityWeights log2 normalized adjusted raw reads for quality ¹⁴
 - Weights were passed into limma pipeline
- *duplicateCorrelation* function computed correlation between tumor tumor-adjacent samples on the same patient ²⁰
 - Included in limma pipeline
- Limma generates linear model using the voom weights and correlation values
- Empirical bayes smoothing increased the power of the analysis

Final model: Mean-variance trend

Methods → Differential Expression, Pathway Enrichment

- Genes were assumed to be differentially expressed if there was a log fold change (logFC) ≥ 2 and p value of < 0.05
- Differentially expressed genes were compiled and analyzed by Reactome using over-representation analysis ⁹
- Pathways were considered enriched if they had p-value of less than 0.05.

References

- 1. Altekruse, Sean F., Susan S. Devesa, Lois A. Dickie, Katherine A. McGlynn, and David E. Kleiner. 2011. "Histological Classification of Liver and Intrahepatic Bile Duct Cancers in SEER Registries." Journal of Registry Management 38 (4): 201–5.
- 2. "Babraham Bioinformatics FastQC A Quality Control Tool for High Throughput Sequence Data." n.d. Accessed March 17, 2023. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
- 3. Bolger, Anthony M., Marc Lohse, and Bjoern Usadel. 2014. "Trimmomatic: A Flexible Trimmer for Illumina Sequence Data." Bioinformatics 30 (15): 2114–20.
- 4. Chhikara, Bhupender S., and Keykavous Parang. 2023. "Global Cancer Statistics 2022: The Trends Projection Analysis." Chemical Biology Letters 10 (1): 451–451.
- 5. Conway, Jake R., Alexander Lex, and Nils Gehlenborg. 2017. "UpSetR: An R Package for the Visualization of Intersecting Sets and Their Properties." Bioinformatics 33 (18): 2938–40.
- 6. Edgren, Gustaf, Liming Liang, Hans-Olov Adami, and Ellen T. Chang. 2012. "Enigmatic Sex Disparities in Cancer Incidence." European Journal of Epidemiology 27 (3): 187–96.
- 7. "EEF1A2 Eukaryotic Translation Elongation Factor 1 Alpha 2 [Homo Sapiens (human)] Gene NCBI." n.d. Accessed March 16, 2023. https://www.ncbi.nlm.nih.gov/gene/1917.
- 8. El-Serag, Hashem B. 2012. "Epidemiology of Viral Hepatitis and Hepatocellular Carcinoma." Gastroenterology 142 (6): 1264–73.e1.
- 9. Fabregat, Antonio, Konstantinos Sidiropoulos, Phani Garapati, Marc Gillespie, Kerstin Hausmann, Robin Haw, Bijay Jassal, et al. 2016. "The Reactome Pathway Knowledgebase." *Nucleic Acids Research* 44 (D1): D481–87.

References

- Gamaev, Lika, Lina Mizrahi, Tomer Friehmann, Nofar Rosenberg, Orit Pappo, Devorah Olam, Evelyne Zeira, et al. 2021. "The pro-Oncogenic Effect of the IncRNA H19 in the Development of Chronic Inflammation-Mediated Hepatocellular Carcinoma." Oncogene 40 (1): 127–39.
- 11. "GENCODE Human Release 25." n.d. Accessed March 18, 2023. https://www.gencodegenes.org/human/release_25.html.
- 12. Ghafouri-Fard, Soudeh, Mohammadhosein Esmaeili, and Mohammad Taheri. 2020. "H19 IncRNA: Roles in Tumorigenesis." Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 123 (March): 109774.
- 13. Guy, Jennifer, and Marion G. Peters. 2013. "Liver Disease in Women: The Influence of Gender on Epidemiology, Natural History, and Patient Outcomes." Gastroenterology & Hepatology 9 (10): 633–39.
- 14. Law, Charity W., Yunshun Chen, Wei Shi, and Gordon K. Smyth. 2014. "Voom: Precision Weights Unlock Linear Model Analysis Tools for RNA-Seq Read Counts." *Genome Biology* 15 (2): R29.
- 15. Liao, Yang, Gordon K. Smyth, and Wei Shi. 2014. "featureCounts: An Efficient General Purpose Program for Assigning Sequence Reads to Genomic Features." Bioinformatics 30 (7): 923–30.
- 16. McGlynn, Katherine A., Jessica L. Petrick, and Hashem B. El-Serag. 2021. "Epidemiology of Hepatocellular Carcinoma." Hepatology 73 Suppl 1 (Suppl 1): 4–13.
- 17. Moshe, Yakir, Ortal Bar-On, Dvora Ganoth, and Avram Hershko. 2011. "Regulation of the Action of Early Mitotic Inhibitor 1 on the Anaphase-Promoting Complex/cyclosome by Cyclin-Dependent Kinases." The Journal of Biological Chemistry 286 (19): 16647–57.
- 18. Natri, Heini M., Melissa A. Wilson, and Kenneth H. Buetow. 2019. "Distinct Molecular Etiologies of Male and Female Hepatocellular Carcinoma." BMC Cancer 19 (1): 951.

References

- Qiu, Fu-Nan, Yi Huang, Dun-Yan Chen, Feng Li, Yan-An Wu, Wen-Bing Wu, and Xiao-Li Huang. 2016. "Eukaryotic Elongation Factor-1α 2 Knockdown Inhibits Hepatocarcinogenesis by Suppressing PI3K/Akt/NF-κB Signaling." World Journal of Gastroenterology: WJG 22 (16): 4226–37.
- 20. Ritchie, Matthew E., Belinda Phipson, Di Wu, Yifang Hu, Charity W. Law, Wei Shi, and Gordon K. Smyth. 2015. "Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies." *Nucleic Acids Research* 43 (7): e47.
- 21. Robinson, Mark D., Davis J. McCarthy, and Gordon K. Smyth. 2010. "edgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data." Bioinformatics 26 (1): 139–40.
- Vescovo, T., G. Refolo, G. Vitagliano, G. M. Fimia, and M. Piacentini. 2016. "Molecular Mechanisms of Hepatitis C Virus-Induced Hepatocellular Carcinoma." Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases 22 (10): 853–61.
- 23. Yan, Hongxian, Zhaohui Li, Quan Shen, Qian Wang, Jianguo Tian, Qingfeng Jiang, and Linbo Gao. 2017. "Aberrant Expression of Cell Cycle and Material Metabolism Related Genes Contributes to Hepatocellular Carcinoma Occurrence." Pathology, Research and Practice 213 (4): 316–21.
- 24. Yoshimizu, Tomomi, Audrey Miroglio, Marie-Anne Ripoche, Anne Gabory, Maria Vernucci, Andrea Riccio, Sabine Colnot, et al. 2008. "The H19 Locus Acts in Vivo as a Tumor Suppressor." Proceedings of the National Academy of Sciences of the United States of America 105 (34): 12417–22.
- 25. Yuan, Yuan, Lingxiang Liu, Hu Chen, Yumeng Wang, Yanxun Xu, Huzhang Mao, Jun Li, et al. 2016. "Comprehensive Characterization of Molecular Differences in Cancer between Male and Female Patients." Cancer Cell 29 (5): 711–22.
- 26. Zhang, Junjun, Rosita Bajari, Dusan Andric, Francois Gerthoffert, Alexandru Lepsa, Hardeep Nahal-Bose, Lincoln D. Stein, and Vincent Ferretti. 2019. "The International Cancer Genome Consortium Data Portal." Nature Biotechnology 37 (4): 367–69.